EVALUASI KINERJA GENSET TERHADAP TINGKAT KETERSEDIAAN OPERASIONAL SESUAI SKEP DITJEN HUBUD NO. 157 TAHUN 2003

YENNI ARNAS

Dosen Sekolah Tinggi Penerbangan Indonesia Curug, PO. BOX 509 Tangerang

ABSTRAK

Direktorat Jenderal Perhubungan Udara mengeluarkan Surat Keputusan SKEP/157/IX/03 tentang Pedoman Pemeliharaan dan Pelaporan Peralatan Fasilitas Elektronika dan Listrik Penerbangan, yang salah satu isinya tentang evaluasi kinerja peralatan elektronika dan listrik penerbangan untuk mengetahui tingkat ketersediaan dan tingkat keandalan peralatan.

Bandara Dr. Ferdinand Lumbantobing mempunyai genset sebagai catu daya listrik cadangan yang harus selalu dalam kondisi yang siap pakai dalam menanggung beban disaat pelayanan listrik yang disupply PLN mengalami kegagalan.Karena pentingnya fasilitas pembangkit listrik sebagai catu daya cadangan perlu dilakukan evaluasi kinerja genset terhadap kesiapan operasional di bandara.

Untuk mendapatkan nilai tingkat ketersediaan dan tingkat keandalan dilakukan langkah-langkah dengan menghitung: Spesified Operating Time (SOT), Actual Operating Time (AOT), Mean Time Between Failures (MTBF), Realibility dan Availability.

Setelah melakukan perhitungan di atas didapat tingkat ketersediaan rata-rata genset masih dalam kategori jarang mengalami kerusakan, dan sesuai SKEP 15/IX/03 dengan nilai ideal 95% bila dikompensasikan dari beberapa genset yang ada secara sistem terhadap tingkat ketersediaan tetap tinggi.

Kata Kunci: Catu dayalistrik, Evaluasi kinerja genset, standar SKEP/157/IX/03 Dirjen Hubud

PENDAHULUAN

Bandara merupakan salah satu unsur yang sangat menentukan dalam keselamatan penerbangan, tercantum dalam Pearaturan Pemerintah Republik Indonesia (PP-RI) No. 70 Tahun 2001. Pasal 11 ayat 1 dari PP tersebut berisi tentang pengaturan kawasan keselamatan operasi penerbangan di bandara, dimana bandara harus

dilengkapi dengan berbagai fasilitas keselamatan penerbangan yang handal, dan dijelaskan lebih rinci pada Keputusan Menteri (KM) No. 36 tahun 1993 tentang kriteria klasifikasi bandara pada pasal point 2 d vang menjelaskan bahwa komponen fasilitas elektronika dan listrik merupakan penunjang utama operasi keselamatan termasuk didalamnya penerbangan, fasilitas catu daya listrk.

Suksesnya pelayanan yang diberikan oleh suatu Bandara tak lepas dari kelengkapan peralatan fasilitas keselamatan penerbangan yang dimiliki dan kehandalannya.

Bandara Dr.Ferdinand Lumbantobing merupakan salah satu Bandara UPT Direktorat Jenderal Perhubungan Udara (DitienHubud) yang terletak di Propinsi Sumatera Utara Tapanuli Tengah. Bandara memiliki beberapa fasilitas penunjang pelayanan keselamatan penerbangan yang beroperasi dari jam 07.00 sampai dengan jam 16.00 wib (9 jam).

Sesuai dengan fasilitas yang disediakan Bandara salah satu fasilitas yang penting keberadaannya dan tidak boleh diabaikan adalah Fasilitas Listrik. Di Bandara ini terdapat dua sumber catu daya listrik yaitu dari Perusahaan Listrik Negara (PLN) sebagai catu daya utama dan genset sebagai catudaya cadangan, yang memiliki 5 unit genset: genset Ikapasitas 10 KVA dipasang pada tahun 1978 tidak beroperasi lagi, genset II kapasitas 35 KVA dipasang pada tahun 2002, genset III kapasitas 125 KVA dipasang pada tahun 2007 (main power) berlokasi di power house, untuk menanggung beban bila ada gangguan PLN, genset IV dan V kapasitas 50 KVA, dipasang pada tahun 1993 berlokasi di DVOR.

Mengingat pentingnya fasilitas pembangkit listrik sebagai catudaya cadangan dan dilihat kondisi daerah Sumatera Utara Sibolga Tapanuli Tengah sering mengalami pemadaman listrik, untuk itu sangat dibutuhkan peranan genset sebagai catu daya cadangan, yang selalu siap dioperasikan sewaktu-waktu, maka perbaikan,

pemeliharaan dan perawatan genset harus sangat diperhatikan untuk mempertahankan pengoperasiannya. Khusus untuk beban-beban vang memiliki prioritas utama/essential. contoh dari beban essential tersebut adalah Non Directional Beacon (NDB).

Namun pada kenyataannya, salah satu genset pengadaan tahun 2002 berada di power house yang mensuplai keperalatan **NDB** sering mengalami kerusakan pada saat dioperasikan. Pada tahun 2005 terjadi peningkatan kerusakan dalam pengoperasiannya. sehingga dalam waktu-waktu tertentu penyediaan fasilitas listrik di NDB terputus.

Pemerintah vang bertugas sebagai regulator, Direktorat Jenderal perhubungan Udara mengeluarkan surat keputusan tentang pedoman pemeliharaan dan pelaporan fasilitas elektronika dan listrik penerbangan, dimana dalam pedoman ini menyebutkan bahwa peralatan disebut jarang mengalami kerusakan bila tingkat ketersediaannya ≥ 95%.

MASALAH

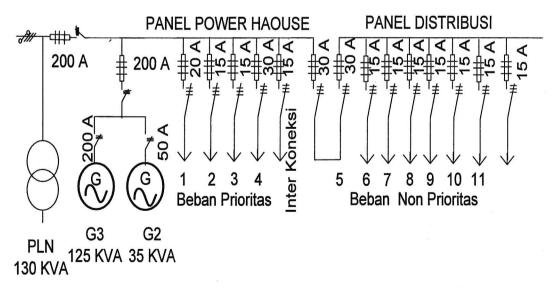
- 1. Bagaimanakah mengevaluasi kinerja genset terhadap tingkat ketersediaan operasional, apakah masih memiliki nilai ideal dalam batas toleransi sesuai SKEP DitjenHubud No. 157 tahun 2003?
- 2. Berapakah nilai kinerja masing masing genset II, genset III, genset IV, genset V terhadap tingkat ketersediaan operasionaal?

 Apakah nilai kinerja masingmasing genset masih memenuhi nilai ideal sesuai batas toleransi SKEP Ditjen Hubud No. 157 tahun 2003 ?

TEKNIK PENGUMPULAN DATA

- 1. Studi kepustakaan, digunakan untuk mendapatkan landasan teori dari buku-buku, referensi, peraturan-peraturan menteri, surat keputusan dan sumbersumber bacaan lain yang relevan dengan judul jurnal ini.
- 2 Metode Penelitian Lapangan Data yang diambil sebagai objek penelitian berupa data sekunder, untuk keperluan evaluasi kinerja dikumpulkan mengenai genset sesuai tingkat ketersediaannya dan data operasional genset setiap harinya dari log book harian pekerjaan dan catatan kerusakan peralatan serta lamanya waktu

perbaikan, semua data menunjukkan tingkat ketersediaan dan tingkat keandalan genset II dari tahun 2002 sampai tahun 2006, genset III tahun 2007 sampai dengan 2011, genset IV dan genset V dari tahun 2007 sampai dengan 2011.


LOKASI PENELITIAN

Lokasi Penelitian di Bandara Dr.Ferdinand Lumbantobing Tapanuli Tengah salah satu Bandara UPT Direktorat Jenderal Perhubungan Udara (Ditjen Hubud).

Penelitian dan pembahasan dilakukan oleh Yenni Arnas dan Marhehe Purba.

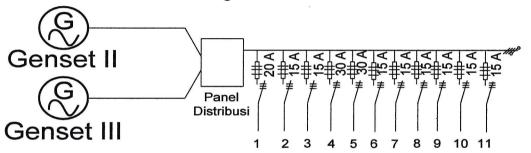
ANALISA PERMASALAHAN

Evaluasi kinerja genset tingkat kesiapan operasional yang berlokasi di power house sebagai catu daya listrik cadangan perlu di analisa kinerjanya.

Gambar 1. Pengaturan Catu Daya Listrik tahun 2008 – 2012 (sumber hasil observasi). Keterangan :

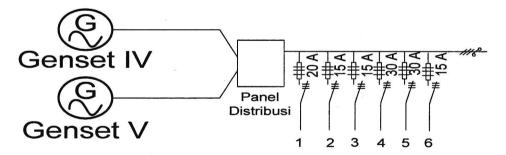
- 1. NDB
- 4. G.PH
- 7. Terminal
- 10. Pompa air

- 2. CCR
- 5. A2 B
- 8. Pen.jalan
- 11. Flood Light


- 3. Tower
- 6. PKP-PK
- 9. Kantor

Pengaturan catu daya listrik di Bandara Dr.Ferdinad Lumbantobing adalah: catu daya utama dari PLN, catu daya cadangan ada dua buah genset berlokasi di power house dan 2 buah genset berlokasi di gedung DVOR yang hanya melayani beban DVOR. Genset II dan Genset III bekerja bergantian untuk

melayani beban fasilitas ke NDB dan fasilitas lain yang ada di bandara. Bila genset II mengalami kegagalan, maka posisinya digantikan oleh genset III, demikian pula sebaliknya.


Dengan demikian secara sistem, genset II dan genset III dapatdigambarkan sebagai berikut:

Gedung Power hause

Gambar 2. Sistem catu daya listrik cadangan tahun 2007 - 2011

Gedung DVOR

Gambar 3. Sistem catu daya listrik cadangan tahun 2007-2011

Dari permasalahan diatas untuk mengetahui tingkat ketersediaan operasional genset diperlukan:

1. data peralatan genset

- 2. perhitungan tingkat ketersediaan
- data operasional dan kerusak, didapat dari log book operasional genset, kemudian

dikumpulkan jumlah Specified OperatingTime (SOT), jumlah total kerusakan (T) dan iumlah generator tidak dioperasikan untuk keperluan pemeliharaan rutin / beriadwal karena pemeliharaan (S) dan total pemeliharaan waktu masing-masing genset dalam jangka waktu 1 jam (12 jam) per tahun selama tahun penelitian.

Dari SOT dikurangi jumlah total waktu kerusakan dan jumlah total waktu pemeliharaan, akan didapat nilai Actual Operating Time (AOT) masing-masing genset. Data SOT dan AOT diperlukan untuk menghitung tingkat ketersediaan genset secara individu dan tingkat ketersediaan genset sebagai sebuah sistem catu daya cadangan.Kemudian AOT = SOT -(S+T), jumlah kerusakan diperlukan untuk menghitung Mean Time Between Failures (MTBF) masingmasing genset. Setelah mendapat nilai MTBF, bersama-sama dengan total waktu kerusakan (T), maka dapat dihitung tingkat keandalan.

Setelah mendapat nilai tingkat ketersediaan dan tingkat keandalan masing-masing genset kemudian dibandingkan dengan pengelompokan peralatan seperti pasal 17 SKEP / 157 /IX /03. Dengan mengetahui tingkat ketersediaan dan tingkat keandalan genset maka akan diketahui bagaimana tingkat kesiapan operasional genset yang ada di Bandara tersebut.

PEMBAHASAN MASALAH

Setelah data terkumpul kemudian disusun dalam tabel Data Peralatan Genset, tabel Data Operasional dan Kerusakan Genset per semester dan Tabel Perhitungan Tingkat ketersediaan dan Tingkat Keandalan Genset.

1. Data Peralatan

Data peralatan genset yang dimiliki Bandara Dr.Ferdinand Lumbantobing, spesifikasi teknis, kondisi dan tahun pemasangannya. Sampai dengan bulan Desember tahun 2006, genset yang dimiliki Bandara hanya satu buah, yaitu genset 35 KVA (genset II) yang beroperasi siaga 9 jam diinstal pada tahun 2002, berfungsi sebagai catu daya cadangan terhadap keseluruhan beban Bandara. listrik Dengan adanya pertambahan beban listrik membuat genset II tidak mampu menanggung beban dan pada tahun 2006 genset II menjalani pemeliharaan besar

Pada bulan Januari tahun 2007 bandara mendapat tambahan genset 125 KVA (genset III). Genset II dan genset III operasi siaga bergantian saat jam operasional bandara (9 jam perhari) sedangkan genset IV dan genset V digunakan khusus untuk catu daya cadangan peralatan DVOR beroperasi 9 jam.

Daveleton	Jml	Merk/type	Kapasita	Lokasi	Thn.	Kondis	Ket
Peralatan	JIIII	Wiendtype	S		Ops	i	
		D+-/1000/E0	10 KVA	PH	1978	Rusak	Tdk.
Genset I	1	Deutz/10CC/F0	101070				Ops
		61	OFICIA	PH	2002	Baik	Tdk
Genset II	1	Deutz/F4L/912	35KVA	111	2002		Ops
		- (DE0) 44 04	125 KVA	PH	2007	Baik	Tdk
Genset III	1	Deutz/BF6M101	125 KVA	111	200.		Ops
	<u></u>	D +-/FCL/010	50 KVA	DVOR	1993	Baik	Tdk
Genset IV	1	Deutz/F6L/912	50 KVA				Ops
		(Tal. (0.10)	E0 10/A	DVOR	1993	Baik	Tdk
Genset V	1	Deutz/F6L/912	50 KVA	DVOIT	1550	Danit	Ops
1	1					mhantahir	shen no

Tabel 1. Data peralatan Genset bandara Dr. Ferdinand Lumbantobing pada kondisi 5 tahun

2. Data Operasional

dan kerusakan Data pemeliharaan yang tercatat pada log book disusun menjadi tabel 2 pada diolah, dan Kemudian lampiran1. untuk disusun dan dihitung tingkat nilai mendapatkan ketersediaandan tingkat keandalan.

Langkah-langkah penghitungan kinerja genset a). Spesified Operating Time (SOT)

Jam operasional Bandara dimulai dari pukul 07.00 wib sampai dengan 16.00 wib (jam operasional Bandara = 9 jam). Sebelum ada genset III, genset II bekerja siaga 9 jam sampai dengan akhir Desember tahun 2006. Setelah ada genset III, bekerja menggantikan secara manual beroperasi siaga 9 jam dalam sehari.

Perhitungan SOT genset II adalah:

Nama peralatan	Bulan perhitungan SOT	SOT
Generator set	Tahun	Jumlah(jam)
Generator set II	Januari – Desember 365 x 9 SOT tahun 2002	3285 jam
Generator set II	Januari – Desember 365 x 9 SOT tahun 2003	3285 jam
Generator set II	Januari – Desember 365 x 9 SOT tahun 2004	3285 jam
Generator set II	Januari – Desember 365 x 9 SOT tahun 2005	3285 jam

Generator set II	Januari – Desember SOT tahun 2006	365 x 9	3285 jam
Jumlah total SOT		a	16425 jam

Tabel 3. Tabulasi SOT genset II tahun 2002-2006 (hasil perhitungan)

Pada tahun 2007 karena genset II sudah sering mengalami kerusakan, genset II dihentikan operasinya dan digantikan oleh genset III beroperasi siaga pada saat jam operasional Bandara selama (9 jam).

Perhitungan SOT genset III adalah:

Nama peralatan	Tahun	Jumlah(jam)	
Generator set III	Januari – Desember 365 x 9 SOT tahun 2007	3285 jam	
Generator set III	Januari – Desember 365 x 9 SOT tahun 2008	3285 jam	
Generator set III	Januari – Desember 365 x9 SOT tahun 2009	3285 jam	
Generator set III	Januari – Desember 365 x9 SOT tahun 2010	3285 jam	
Generator set III	Januari – Desember 365 x 9 SOT tahun 2011	3285 jam	
Jumlah total SOT		16425jam	

Tabel 4. Tabulasi SOT genset III tahun 2007 -2011(hasil perhitungan)

Perhitungan SOT genset IV dan genset V adalah:

Generator set IV	Januari – Desember 365 x 9 SOT tahun 2009	3285 jam
Generator set IV	Januari – Desember 365 x9 SOT tahun 2010	3285 jam
Generator set IV	Januari – Desember 365 x9 SOT tahun 2011	3285 jam
Jumjah total SOT		16425 jam
Generator set V	Januari – Desember 365 x9 SOT tahun 2007	3285 jam
Generator set V	Januari – Desember 365 x9 SOT tahun 2008	3285 jam
Generator set V	Januari – Desember 365 x9 SOT tahun 2009	3285 jam

Generator set V	Januari – Desember 365 x9 SOT tahun 2010	3285 jam
Generator set V	Januari – Desember 365 x9 SOT tahun 2011	3285 jam
Jumjah total SOT		16425
		jam

Tabel 5. Tabulasi SOT genset IV dan Genset V tahun 2007- 2011(hasil perhitungan)

b). Shutdown Time Period (S)

Generator set tidak dioperasikan untuk keperluan pemeliharaan rutin / berjadwal yang dilakukan teknisi dan bersifat pemeliharaan pencegahan. Rata-rata per bulan dilakukan pemeliharaan rutin dalam jangka waktu 1 jam (12 jam / tahun).

c). Total waktu kerusakan (T) dan jumlah kerusakan

Total waktu kerusakan adalah jumlah waktu peralatan tidak beroperasi karena mengalami kerusakan.

Jumlah total waktu kerusakan selama satu tahun dilihat pada table 3 lampiran 2. Sedangkan pada kolom 5 terdapat jumlah terjadinya kerusakan.

d). Actual Operating Time (AOT)

Perhitungan AOT genset II tahun 2006:

$$AOT = SOT - (S + T)$$

= 3285 - 74 = 3211 jam

AOT untuk genset lainnya untuk tahun 2006 dan tahun berikutnya ada pada table 3 lampiran 2 kolom 6.

e). Mean Time Between Failures (MTBF)

$$MTBF = \frac{Waktu \text{ operasi yang aktual (AOT)}}{Jumlah \text{ kegagalan}}$$

Perhitungan Mean Time Between FailuresMTBF untuk genset II tahun2006 :

$$MTBF = \frac{3211}{29} \\ = 110,7242$$

Perhitungan Mean Time Between Failures MTBF genset lainnya terdapat pada table 3 lampiran 2 kolom 8.

f). Reliability

Untuk menghitung terhadap tingkat keandalan (reliability)

$$R = 100.e^{-t/m}$$

Perhitungan tingkat keandalan untuk genset II tahun 2006:

$$R = 100 \times 2,718^{-62/110,7242}$$
$$= 57.13\%$$

Perhitungan terhadap tingkat keandalan untuk genset lainnya terdapat pada table 3 lampiran 2 kolom 11.

g). Availability / tingkat ketersediaan

$$A = \frac{\text{Waktu operasi yang aktual (AOT)}}{\text{Waktu operasi yang ditetapkan (SOT)}} \times 100 \%$$

Perhitungan tingkat ketersediaan genset II untuk tahun 2005 adalah:

$$A = \frac{3211}{3285} \times 100\%$$
$$= 97,747 \%$$

Perhitungan terhadap tingkat ketersediaan genset yang lain terdapat pada table 3 lampiran 2 kolom 10.

h). Rata -rata Hitung (Mean)

1). Rata -rata MTBF per genset tahun 2002 - 2006

Dengan melihat nilai MTBF dari table 3 lampiran 2 kolom 8 dicari nilai rata-rataMean Time Between Failures MTBF tiap genset selama tahun penelitian.

Perhitungan MTBF genset II sebagai berikut :

$$Me = \frac{\sum x_1}{n}$$

Me =
$$\frac{110,73 + 172,24 + 123,59 + 540,67 + 141,05}{5}$$

Untuk nilai rata-rata Mean Time Between Failures MTBF genset yang lain lihat tabel di bawah.

	Genset II	Genset III	Genset IV	Genset V
TAHUN	2002-2006	2007-2011	2007-2011	2007-2011
	(jam)	(jam)	(jam)	(jam)
1s/d5	110,73	545,83	654,4	546
1s/d5	172,24	326,5	296,27	271,66
1s/d5	123,59	189,94	250,38	271,33
1s/d5	540,67	464,58	408,25	466,57
1s/d5	141,05	232,14	407	
Rata-rata	217,656	·		325,1
Tabel		351,80	403,26	376,132

Tabel 4. Rata-rataMTBF pergenset tahun 2002-2006 dan tahun 2007-

2011

2). Rata-rata tingkat keandalan genset II per tahun

Dari nilai tingkat keandalan pada table 3 lampiran 2 kolom 11, dihitung nilai rata-rata tingkat keandalan untuk genset II, III, IV, V selama tahun penelitian adalah

:
$$Me = \frac{\sum x_1}{n}$$

$$Me = \frac{57,13\% + 0,2414\% + 8,34\% + 95,12\% + 84,96\%}{5}$$

$$Me = 49,158\%$$

Untuk perhitungan rata-rata terhadap tingkat keandalan genset yang lain lihat tabel dibawah.

	Genset II	Genset III	Genset IV	Genset V
TAHUN	2002-2006	2007-2011	2007-2011	2007-2011
1 s/d 5	57,13%	0,06%	99%	0,06%
1 s/d 5	0,2414%	95,88%	86,68%	95,68%
1 s/d 5	8,34%	79,74%	93,81%	94,98%
1 s/d 5	95,12%	97,66%	97,58%	98,73%
1 s/d 5	84,96%	92,54%	95,51%	94,03%
Rata-rata	49,158%	73,176%	94,54%	
		,	J-7,J-7/0	76,70%

Tabel 5. Rata-rata tingkat keandalan pergenset tahun 2002-2006 dan 2007-2011

3). Rata-rata tingkat ketersediaan genset per tahun

Dari nilai tingkat ketersediaan pada table 3 lampiran 2 kolom 10 dapat dicari nilai rata-ratatingkat ketersediaan setiap genset selama tahun penelitian.

Hasil perhitungan untuk genset II, III, IV,V maka perhitungannya adalah:

	10			na permitunga
	Genset II	Genset III	Genset IV	Genset V
TAHUN	2002-2006	2007-2011	2007-	2007-
	-		2011	2011
1s/d5	97,75%	99,7%	99,57%	99,72%
1 s / d 5	68,15%	99,14%	98,35%	99,24%
1s/d5	90,29%	98,35%	99,08%	99,12%
1s/d5	98,76%	98,99%	99,14%	99,42%
1s/d5	98,96%	98,08%	99,12%	98,96%
Rata-rata	90,78%	98,85%	99,05%	99,29%

Tabel 6. Rata rata terhadap tingkat ketersediaan genset per tahun.

4). Tingkat ketersediaan sistem catu daya cadangan

Untuk melihat nilai terhadap tingkat ketersediaan sesuai pada table 3 lampiran 2kolom 10,maka rata-rata hitung tingkat ketersediaan genset II, genset IV dan genset V adalah sebagai berikut:

Me =
$$\frac{\sum x_1}{n}$$

Me = $\frac{97,75\% + 99,7\% + 99,57\% + 99,72\%}{4}$

$$Me = 99,18\%$$

Setelah dapat nilai rata-rata terhadap tingkat ketersediaan genset dalam sistem setiap tahun, maka dapat pula dihitung tingkat ketersediaan secara sistem :

$$A = 1 - (1 - Ax)^2$$

Maka untuk tingkat ketersediaan sistem catu daya cadangan tahun 2002 menjadi :

$$A = 1 - (1 - 99,18)^2$$
$$= 98,356$$

Berikut hasil perhitungan rata-rata tingkat ketersediaan per genset sebagai sebuah sistem catu daya cadangan

	Availability						
TAHUN	GENSET II	GENSET III	GENSET IV	GENSET V			
	Thn.02/06	Thn.07/11	Thn.07/11	Thn.07/11			
1s/d5	97,75%	99,69%	99,57%	99,72%			
1s/d5	65,15%	99,20%	98,35%	99,14%			
1s/d5	90,29%	98,30%	99,08%	99,12%			
1s/d5	95,12%	98,99%	99,14%	99,42%			
1s/d5	98,96%	98,93%	99,12%	98,96%			
1s/d5	90,78%	99,02%	99,05%	99,29%			

Tabel 7. MTBF, Tingkat keandalan dan Tingkat ketersediaan.

5). Analisis Kondisi Genset

No.	Thn. 1	Thn. 2	Thn. 3	Thn .4	Thn. 5	Rata-rata
Genset II	97,75%	68,15%	90,29%	98,76%	98,96%	90,78%
Kelompok	JR	SR	JR	JR	JR	JR
Genset III	99,69%	99,20%	98,30%	98,99%	98,93%	99,02%
Kelompok	JR	JR	JR	JR	JR	JR
Genset IV	99,57%	98,35%	99,08%	99,14%	99,12%	99,05%
Kelompok	JR	JR	JR	JR	JR	JR
Genset V	99,72%	99,24%	99,12%	99,42%	98,96%	99,29 %
Kelompok	JR	JR	JR	JR	JR	JR

Tabel 8. Pengelompokan tingkat ketersediaan genset selama 5 tahun

Keterangan:

JR = Jarang rusak (A > 95%)

SR = Sering Rusak (70% = A = 95%)

SSR = Sangat Sering Rusak

Setelah mengetahui ratarata terhadap tingkat ketersediaan masingmasing genset dari tahun-ketahun selamanya 5 tahun, maka kemudian tingkat ketersediaan genset tersebut

dikelompokkan menurut ketentuan yang diberikan oleh Pasal 17 SKEP/157/IX/03. Hasil pengelompokan tingkat ketersediaan genset akan meniadi seperti tabel diatas. Dari table 8 dapat dilihat bahwa tingkat ketersediaan genset III, genset IVdan genset V yang ada di Bandara Dr.Ferdinad Lumbantobing masih dalam kondisi iarang mengalami kerusakan. kecuali genset II dalam hal ini tidak lagi dioperasikan namun masih masuk dalam daftar inventaris peralatan.

Dari table 4 rata-rata Mean Time Between Failures MTBF dilihat secara sistem, catu daya cadangan yang ada di Bandara Dr. Ferdinand Lumbantobing selama 5 tahun sesudahnya tingkat ketersediaan tetap tinggi (diatas 98%). Ini disebabkan oleh adanya peralatan cadangan yang dapat menggantikan genset yang mengalami kegagalan operasi.

KESIMPULAN

Dari data dan analisis tingkat ketersediaan generator set selama 5

tahun dapat disimpulkan sebagai berikut :

- 1. Hasil penelitian menunjukkan: Pada tahun 2005 tingkat ketersediaan genset 1145,57% masuk dalam kelompok katagori sangat sering rusak (A<70%), sehingga tugas genset Il sudah digantikan oleh genset III sebagai catu daya cadangan yang selalu siap beroperasi selama 9 jam.
- 2. Dari analisis data bahwa tingkat ketersediaan operasional genset II 90,78% kurang dari nilai ideal 95% berarti sering mengalami kerusakan, sedangkan genset III. genset IV dan genset V berlokasi Bandara Ferdinand Dr. Lumbantobing Tapanuli Tengah dengan nilai ideal sebesar 95% terdapat dalam SKEP 157/IX/03 dapat dikompensasikan yang sehingga secara sistem terhadap tingkat ketersediaannya tetap tinggi.

DAFTAR PUSTAKA

Daryl Mather, An Introduction to the Maintenance scorecard, (http://www.aintenanceworld.
Com/maintenance-

- management.htm) tanggal 10 Nopember 2013.
- Harten P Van dan Setiawan E. Ir 1991, Instalasi Arus Kuat, Percetakan Bina Cipta, Jakarta.
- Richardus Eko Indrajit, Richardus Jokopranoto, Manajemen Persediaan, (Jakarta: Grasindo, 2003).
- Subdit Listrik, Syarat-syarat Pemasangan Genset,DitfaslektrikJakarta.

- Sumadi Suryabrata, Metodelogi Penelitian, (Jakarta : CV. Rajawali).
- SKEP/157/IX/03, (Direktorat Jenderal Perhubungan Udara, 2003)
- SNI 04 7018 2004 Sistim Pasokan Daya Listrik Darurat dan ,Siaga, (Badan Standardisasi Nasional, 2004).
- V.L. Meleev, Drs, AM, Bambang Priambodo Ir, 1986, Operasi dan Pemeliharaan Mesin Diesel, Erlangga, Jakarta.